FADER (278231)

  https://cordis.europa.eu/project/id/278231

  FP7 (2007-2013)

  Flight Algorithms for Disaggregated Space Architectures

  ERC Starting Grant - Systems and communication engineering (ERC-SG-PE7)

  spacecraft  ·  satellite technology

  2011-10-01 Start Date (YY-MM-DD)

  2016-09-30 End Date (YY-MM-DD)

  € 1,499,999 Total Cost


  Description

Standard spacecraft designs comprise modules assembled in a single monolithic structure. When unexpected situations occur, the spacecraft are unable to adequately respond, and significant functional and financial losses are unavoidable. For instance, if the payload of a spacecraft fails, the whole system becomes unserviceable and substitution of the entire spacecraft is required. It would be much easier to replace the payload module only than launch a completely new satellite. This idea gives rise to an emerging concept in space engineering termed disaggregated spacecraft. Disaggregated space architectures (DSA) consist of several physically-separated modules, interacting through wireless communication links to form a single virtual platform. Each module has one or more pre-determined functions: Navigation, attitude control, power generation and payload operation. The free-flying modules, capable of resource sharing, do not have to operate in a tightly-controlled formation, but are rather required to remain in bounded relative position and attitude, termed cluster flying. DSA enables novel space system architectures, which are expected to be much more efficient, adaptable, robust and responsive. The main goal of the proposed research is to develop beyond the state-of-the-art technologies in order to enable operational flight of DSA, by (i) developing algorithms for semi-autonomous long-duration maintenance of a cluster and cluster network, capable of adding and removing spacecraft modules to/from the cluster and cluster network; (ii) finding methods so as to autonomously reconfigure the cluster to retain safety- and mission-critical functionality in the face of network degradation or component failures; (iii) designing semi-autonomous cluster scatter and re-gather maneuvesr to rapidly evade a debris-like threat; and (iv) validating the said algorithms and methods in the Distributed Space Systems Laboratory in which the PI serves as a Principal Investigator.


  Complicit Organisations

1 Israeli organisation participates in FADER.

Country Organisation (ID) VAT Number Role Activity Type Total Cost EC Contribution Net EC Contribution
Israel TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY (999907720) IL557585585 coordinator HES € 0 € 1,499,999 € 0