CoMETHy (279075)

  https://cordis.europa.eu/project/id/279075

  FP7 (2007-2013)

  Compact Multifuel-Energy To Hydrogen converter

  Development of fuel processing catalyst, modules and systems (SP1-JTI-FCH.2010.2.2)

  heat engineering  ·  natural gas  ·  lipids  ·  aliphatic compounds  ·  hydrogen energy

  2011-12-01 Start Date (YY-MM-DD)

  2015-12-31 End Date (YY-MM-DD)

  € 4,933,250 Total Cost


  Description

Sustainable decentralized hydrogen production requires development of efficient fuel-flexible units adaptable to renewable sources. CoMETHy aims at developing a compact steam reformer to convert reformable fuels (methane, bioethanol, glycerol, etc.) to pure hydrogen, adaptable to several heat sources (solar, biomass, fossil, refuse derived fuels, etc.) depending on the locally available energy mix. The following systems and components will be developed: • a structured open-celled catalyst for the low-temperature (< 550°C) steam reforming processes • a membrane reactor to separate hydrogen from the gas mixture • the use of an intermediate low-cost and environmentally friendly liquid heat transfer fluid (molten nitrates) to supply process heat from a multi fuel system. Reducing reforming temperatures below 550°C by itself will significantly reduce material costs. The process involves heat collection from several energy sources and its storage as sensible heat of a molten salts mixture at 550°C. This molten salt stream provides the process heat to the steam reformer, steam generator, and other units. The choice of molten salts as heat transfer fluid allows: • improved compactness of the reformer; • rapid and frequent start-up operations with minor material ageing concerns; • improved heat recovery capability from different external sources; • coupling with intermittent renewable sources like solar in the medium-long term, using efficient heat storage to provide the renewable heat when required. Methane, either from desulfurized natural gas or biogas, will be considered as a reference feed material to be converted to hydrogen. The same system is flexible also in terms of the reformable feedstock: bioethanol and/or glycerol can be converted to hydrogen following the same reforming route. The project involves RTD activities ion the single components, followed by proof-of-concept of the integrated system at the pilot scale (2 Nm2/h of hydrogen) and cost-benefit analysis.


  Complicit Organisations

2 Israeli organisations participate in CoMETHy.

Country Organisation (ID) VAT Number Role Activity Type Total Cost EC Contribution Net EC Contribution
Italy UNIVERSITA DEGLI STUDI DI SALERNO (999899184) IT00851300657 participant HES € 0 € 193,300 € 0
Greece ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (998802502) EL099785242 participant REC € 0 € 169,056 € 0
Greece ARISTOTELIO PANEPISTIMIO THESSALONIKIS (999895692) EL090049627 participant HES € 0 € 135,232 € 0
Italy UNIVERSITA CAMPUS BIO MEDICO DI ROMA (999440665) IT04802051005 participant HES € 0 € 30,818 € 0
Germany FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV (999984059) DE129515865 participant REC € 0 € 183,073 € 0
Israel ACKTAR LTD. (997255255) IL511926255 participant PRC € 0 € 267,888 € 0
Italy AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE (999988521) IT00985801000 coordinator REC € 0 € 351,468 € 0
Netherlands STICHTING ENERGIEONDERZOEK CENTRUM NEDERLAND (999988715) NL001752625B01 participant REC € 0 € 218,353 € 0
Israel TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY (999907720) IL557585585 participant HES € 0 € 140,210 € 0
Germany GKN POWDER METALLURGY ENGINEERING GMBH (991531964) DE814517976 participant PRC € 0 € 174,020 € 0
Italy NEXTCHEM SPA (969042029) IT01668910662 participant PRC € 0 € 582,103 € 0
Italy UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA (999987745) IT02133771002 participant HES € 0 € 38,574 € 0