GreEnergy (101006963)
https://cordis.europa.eu/project/id/101006963
Horizon 2020 (2014-2020)
Wideband optical antennae for use in energy harvesting applications - GreEnergy
Developing the next generation of renewable energy technologies (LC-SC3-RES-1-2019-2020)
internet of things · graphene · photovoltaic
2021-01-01 Start Date (YY-MM-DD)
2024-12-31 End Date (YY-MM-DD)
€ 3,999,065 Total Cost
Description
Energy is a vital need of humanity and a primary indicator a of nations’ growth. However, most energy sources we use have low efficiency, rely on non-renewable resources and cause severe damage to the environment. The cleanest resource, and the one which offers virtually unlimited energy is the sun. However, according to the Center for Climate and Energy Solutions, current solar photovoltaics (PV) produce little more than 2% of the world’s electricity. This low output is primarily resulting from two factors: current commercial solar PV cells have approximately 15-20% efficiency, and the price of a 1m2 is around €400. GreEnergy aims to develop a wideband optical antenna array with very high efficiency. The GreEnergy device will integrate the energy-harvesting component in a self-powering nano-system. A prototype of the integrated components will be developed incorporating nano-optical antennas with nano-rectifiers (rectennas) and a micro-energy storage component. Fabrication of all components will be developed with the aim of integration on a single microchip in a single fabrication process. To ensure success of the rectennas development, we will use a risk mitigation plan by dual research teams using both graphene and metal-insulator-metal based solutions to achieve rectenna prototypes (TRL4). Simulations will provide full system level circuitry, act as a benchmark of the proof of concept design (TRL3) and culminate in road mapping for future full-scale development and commercialization. Within GreEnergy, the targeted efficiency of the overall system is 20-40%, while the theoretical efficiency is over 90%, at an estimated system cost below €100 per 1m2. Such a technology would fundamentally change solar energy harvesting and have dramatic effects on consumers, society, economic growth and the environment. Further, demonstration of the system provides a proof-of-concept backbone for numerous future micro/nano-systems such as IoT and nano-sensor applications.
Complicit Organisations
1 Israeli organisation participates in GreEnergy.Country | Organisation (ID) | VAT Number | Role | Activity Type | Total Cost | EC Contribution | Net EC Contribution |
---|---|---|---|---|---|---|---|
Switzerland | SCIPROM SARL (999748834) | CHE112286708TVA | participant | PRC | € 221,250 | € 221,250 | € 221,250 |
Germany | IHP GMBH - INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS (999606438) | DE138996546 | participant | OTH | € 608,250 | € 608,250 | € 608,250 |
Italy | UNIVERSITA DEGLI STUDI DI UDINE (999899281) | IT01071600306 | participant | HES | € 312,558 | € 312,558 | € 312,558 |
Israel | NOGAH PHOTONICS LTD (896983057) | IL515013969 | participant | PRC | € 207,500 | € 207,500 | € 207,500 |
Finland | AALTO KORKEAKOULUSAATIO SR (991256096) | FI22283574 | participant | HES | € 455,131 | € 455,131 | € 455,131 |
Germany | GESELLSCHAFT FUR ANGEWANDTE MIKRO UND OPTOELEKTRONIK MIT BESCHRANKTERHAFTUNG AMO GMBH (999796558) | DE154818567 | participant | OTH | € 1,116,875 | € 1,116,875 | € 1,116,875 |
Italy | UNIVERSITA POLITECNICA DELLE MARCHE (999866689) | IT00382520427 | participant | HES | € 440,000 | € 440,000 | € 440,000 |
Sweden | CHALMERS TEKNISKA HOGSKOLA AB (999980373) | SE556479559801 | coordinator | HES | € 637,500 | € 637,500 | € 637,500 |