ColloQuantO (681421)

  https://cordis.europa.eu/project/id/681421

  Horizon 2020 (2014-2020)

  Colloidal Quantum Dot Quantum Optics

  ERC Consolidator Grant (ERC-CoG-2015)

  nanocrystals  ·  semiconductivity  ·  quantum optics  ·  confocal microscopy  ·  photons

  2016-05-01 Start Date (YY-MM-DD)

  2021-04-30 End Date (YY-MM-DD)

  € 2,000,000 Total Cost


  Description

Colloidal semiconductor nanocrystals have already found significant use in various arenas, including bioimaging, displays, lighting, photovoltaics and catalysis. Here we aim to harness the extremely broad synthetic toolbox of colloidal semiconductor quantum dots in order to utilize them as unique sources of quantum states of light, extending well beyond the present attempts to use them as single photon sources. By tailoring the shape, size, composition and the organic ligand layer of quantum dots, rods and platelets, we propose their use as sources exhibiting a deterministic number of emitted photons upon saturated excitation and as tunable sources of correlated and entangled photon pairs. The versatility afforded in their fabrication by colloidal synthesis, rather than by epitaxial growth, presents a potential pathway to overcome some of the significant limitations of present-day solid state sources of nonclassical light, including color tunability, fidelity and ease of assembly into devices. This program is a concerted effort both on colloidal synthesis of complex multicomponent semiconductor nanocrystals and on cutting edge photophysical studies at the single nanocrystal level. This should enable new types of emitters of nonclassical light, as well as provide a platform for the implementation of recently suggested schemes in quantum optics which have never been experimentally demonstrated. These include room temperature sources of exactly two (or more) photons, correlated photon pairs from quantum dot molecules and entanglement based on time reordering. Fulfilling the optical and material requirements from this type of system, including photostability, control of carrier-carrier interactions, and a large quantum yield, will inevitably reveal some of the fundamental properties of coupled carriers in strongly confined structures.


  Complicit Organisations

1 Israeli organisation participates in ColloQuantO.

Country Organisation (ID) VAT Number Role Activity Type Total Cost EC Contribution Net EC Contribution
Israel WEIZMANN INSTITUTE OF SCIENCE (999979306) IL520016858 coordinator HES € 2,000,000 € 2,000,000 € 2,000,000