TRANS2DCHEM (101057616)

  https://cordis.europa.eu/project/id/101057616

  Horizon Europe (2021-2027)

  Transition of 2D-chemistry based supercapacitor electrode material from proof of concept to applications

  Energy Harvesting and Storage Technologies (HORIZON-EIC-2021-TRANSITIONCHALLENGES-01-02)

  electric batteries  ·  internet  ·  electric vehicles  ·  graphene  ·  big data

  2022-09-01 Start Date (YY-MM-DD)

  2025-08-31 End Date (YY-MM-DD)

  € 2,485,717


  Description

"The world population is significantly increasing and its reliance on energy-based devices is higher than ever before. This leads to a continuous rise in global energy consumption. In addition, the ever-increasing demand for energy storage devices with improved performances and stability in securing safe operation of big data centers and networks for the ""internet of things"", transportation, grid storage, electronics in space applications and implanted medical devices is motivating the scientific community to develop new chemistries, compositions and morphologies of electrode materials in order to meet these challenges. Currently, rechargeable lithium-ion batteries, the most widely used electrochemical energy storage system of today, are still limited in terms of power densities and fire safety issues in many applications. Within the ERC-CoG 2D-CHEM and the subsequent ERC-PoC UP2DCHEM, the team of prof. Otyepka developed a nitrogen super-doped graphene electrode material (SC-GN3), with an unprecedented density. Supercapacitors (SC) made by SC-GN3 material can achieve up to 75 Wh/kg (200 Wh/L) energy density and show high-power density capability with potential up to 19 kW/kg (50 kW/L), twice higher than reference state of the art. Increasing the energy density of SC beyond 25Wh/kg will offer a paradigm shift in SC technologies allowing their wide application in electric vehicles and as support for batteries in power levelling and quick response devices for high power applications. The TRANS2DCHEM project intends to take this important field beyond its state-of-the-art, via the exploitation of the previously unexplored properties of the material, imparting top-rated performance in the respective energy storage devices. The proposal will bring the technology readiness of the described energy storage devices to a level of 6, by validating their operation in industrially-relevant environment in coin, pouch and wound (cylindrical) cells."


  Complicit Organisations

1 Israeli organisation participates in TRANS2DCHEM.

Country Organisation (ID) VAT Number Role Activity Type Total Cost EC Contribution Net EC Contribution
Italy ITELCOND SRL (917041493) IT03229400159 participant PRC € 807,940 € 807,940 € 807,940
Israel BAR ILAN UNIVERSITY (999886574) IL580063683 participant HES € 606,150 € 606,150 € 606,150
Czechia UNIVERZITA PALACKEHO V OLOMOUCI (999649506) nan coordinator HES € 1,071,627 € 1,071,627 € 1,071,627